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Fig. 1. We propose a motion retargeting framework, Adversarial Correspondence Embedding (ACE), to retarget human motions to characters with significantly
different morphologies. This figure illustrates the retargeted wall-washing motions from human (1st from left) to Spot (2nd), Crab (3rd), and Stretch (4th).

Motion retargeting is a promising approach for generating natural and com-
pelling animations for nonhuman characters. However, it is challenging
to translate human movements into semantically equivalent motions for
target characters with different morphologies due to the ambiguous nature
of the problem. This work presents a novel learning-based motion retarget-
ing framework, Adversarial Correspondence Embedding (ACE), to retarget
human motions onto target characters with different body dimensions and
structures. Our framework is designed to produce natural and feasible char-
acter motions by leveraging generative-adversarial networks (GANs) while
preserving high-level motion semantics by introducing an additional feature
loss. In addition, we pretrain a character motion prior that can be controlled
in a latent embedding space and seek to establish a compact correspondence.
We demonstrate that the proposed framework can produce retargeted mo-
tions for three different characters – a quadrupedal robot with a manipulator,
a crab character, and a wheeled manipulator. We further validate the design
choices of our framework by conducting baseline comparisons and a user
study. We also showcase sim-to-real transfer of the retargeted motions by
transferring them to a real Spot robot.

CCS Concepts: • Computing methodologies→ Procedural animation;
Motion processing; • Computer systems organization→ Robotics.
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1 INTRODUCTION
Animating non-human characters has been a longstanding topic of
discussion in computer graphics. Various animation films, movies,
and computer games feature beloved characters with various mor-
phologies inspired by everyday objects (e.g., Lumière [Disney 1991]),
animals (e.g., Sebastian [Disney 1989]), or imaginary robotic designs
(e.g., Wall-E [Pixar 2008], R2D2 [Lucasfilm 1977], and Omnics [Bliz-
zard 2016]). While moving in their own distinctive styles, these
characters still need to move somewhat “human-like” to convey
human-interpretable semantics. It is possible to use manual design,
optimal control, or reinforcement learning approaches to develop
motion controllers, but this process may require great manual effort
from experts and take multiple iterations to produce effective and
human-understandable motions, even for skilled animators.

A more direct way to empower these non-human characters with
diverse movements is to translate human motions. This motion
retargeting approach not only simplifies the motion design process
by avoiding complex cost or reward engineering but also has the

1

https://doi.org/10.1145/3610548.3618255
https://doi.org/10.1145/3610548.3618255


SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Tianyu Li, Jungdam Won, Alexander Clegg, Jeonghwan Kim, Akshara Rai, and Sehoon Ha

potential to make motions human-interpretable. However, it is not
straightforward to adapt motions between characters with very
different morphologies due to ambiguity and feasibility issues. For
instance, which hand of a human should be mapped onto the single
manipulator of a quadrupedal robot? Which types of gaits should
be used when the character is following a human’s walking pace?
It is important to note that this is a question of style, and there
is no single right answer. Even worse, some human motions are
impossible for characters due to different body dimensions and
structures and may cause weird dynamics or self collisions. As a
result, there are fewer works that address cross-morphology motion
retargeting from human to non-human characters compared to the
extensive body of work on human-to-human motion mapping.
The problem of motion retargeting can be approached using a

range of methods. Optimization-based motion approaches [Abdul-
Massih et al. 2017] allow us to retarget a given motion to a new
character by minimizing an objective function, but they may need
to be carefully tuned to take different characters or scenarios into
consideration. On the other hand, data-driven approaches are able
to establish implicit relationships and generalize to large scenarios.
Supervised learning offers users the option to build an explicit re-
lationship from a paired dataset [Kim et al. 2022], but it requires
precise matching of the motions between the source and target
characters, which can be labor-intensive and time-consuming. On
the other hand, researchers have demonstrated that recent advances
in unsupervised learning can translate images [Zhu et al. 2017] and
language [Rashid et al. 2019] across domains. Our work is moti-
vated by these recent advances, where motion retargeting can be
formulated as a translation problem between motions existing in
two different domains. While the prior works [Aberman et al. 2020]
investigated adversarial learning for motion retargeting between
similar humanoids, it has not been extensively investigated in the
context of cross-morphology motion retargeting.

In this work, we present Adversarial Correspondence Embedding
(ACE), a learning-based motion retargeting framework that can
translate human motions to a non-human character with significant
morphological differences. The goal of our framework is to generate
natural, feasible, and semantics-preserving character motions for
given humanmotions. To this end, we build our framework on top of
adversarial learning, which simultaneously trains a generator that
retargets the given motion and a discriminator that evaluates the
naturalness of the generated motion. We further guide the learning
process by introducing an additional feature loss that preserves
semantic features from the source human motion. We also pretrain
motion priors that control the character’s motions using a latent
embedding, allowing the generator to learn a compact mapping to
this latent embedding space instead of the full state of the character.
We demonstrate that our proposed ACE framework can retar-

get various human motions to three very different morphologies,
including a quadrupedal robot with a manipulator (Spot [BostonDy-
namics 2019]), a crab character that uses two legs as manipulators,
and a mobile robot with a telescopic manipulator (Stretch [Hel-
loRobot 2023]). Across such a large range of scenarios, our frame-
work generates compelling retargeted motions that look smooth,
natural, and feasible on the target character. We also compare our
proposed framework against several baseline approaches through

multiple objective metrics and also by conducting a user study. We
further demonstrate the flexibility of our work by retargeting mo-
tions with different end-effector mappings. Finally, we showcase the
sim-to-real transfer of the retargeted motions to a real Spot robot
to highlight the physical validity of the proposed method.

2 RELATED WORKS

2.1 Motion Retargeting
Motion retargeting is one of the long-standing challenges in com-
puter animation. One common approach is to formulate it as an
optimization problem with different constraints on kinematic prop-
erties [Gleicher 1998], end-effector motions [Choi and Ko 2000] or
dynamics feasibility [Tak and Ko 2005]. Recently, a differentiable
optimal control method, DOC, has been proposed [Grandia et al.
2023] to retarget motion capture data to real robots with various
proportions and mass distribution. Although these methods can syn-
thesize natural motions for new characters, the design of objectives
and constraints often requires a labor-intensive process.
As large mocap datasets become accessible, data-driven motion

retargeting approaches have been proposed. Some researchers [Del-
haisse et al. 2017; Jang et al. 2018] train the retargeting function
through a small set of paired data via supervised learning, then gen-
eralize to newmotions. The recent success of approaches using cycle-
GANs on unpaired image-to-image translation [Zhu et al. 2017]
inspires research on investigating motion retargeting with unpaired
datasets. Villegas et al. [2018] propose using a cycle-consistency
adversarial objective with a forward kinematics-based recurrent
network for motion retargeting. Aberman et al. [2020] propose a
skeleton-aware network to process motion such that motion can be
retargeted to another character with a differently structured skele-
ton. However, the aforementioned data-driven methods only work
for retargeting animations between humanoid characters. Noam
et al. [Aigerman et al. 2022] discusses retargeting between arbi-
trary meshes while focusing less on the animation of articulated
characters.

Several works [Choi et al. 2020; Kim et al. 2022; Rhodin et al. 2014,
2015; Seol et al. 2013; Yamane et al. 2010] have explored retarget-
ing motions from humans to non-humanoid characters, where the
skeleton of the target character may greatly differ from the sources
in terms of both structures and dimensions. These methods require
selecting a few keyframe poses from human-captured motion se-
quences and manually pairing them with poses [Rhodin et al. 2014;
Yamane et al. 2010] or motion sequences [Rhodin et al. 2015; Seol
et al. 2013] for the target character, which can be labor-intensive.
Abdul-Massih et al. [2017] addresses the cross-morphology motion
retargeting problem by defining Groups of Body Parts (GBPs) and
translating the problem into constrained optimization to preserve
the semantics of the original motion. However, the motions beside
GBPs need to be designed manually. In this work, we tackle the
problem of cross-morphology motion retargeting with an unpaired
dataset. Our goal is to transfer the motion of a huma to a nonhuman
character, while preserving the semantics.
2.2 Embedding Space Models for Animation and Control
Embedding space models have been explored in controller design
for both kinematic and dynamic characters. The idea is to learn
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Fig. 2. Overview diagram of Adversarial Correspondence Embedding (ACE).
We first pre-train a motion prior that controls the character’s state x𝑟 with
a latent variable z. Then we train a motion retargeting Generator that maps
the current human state xℎ𝑡 and the previous character state x𝑟

𝑡−1 into
the latent variable, and a discriminator that determines whether the state
transition is realistic or not. We also introduce an additional feature loss
that guides the correspondence learning.

a low-dimensional embedding that encapsulates natural-looking
motions, then to use this learned embedding to efficiently construct
controllers or further constrain output motions. Given kinematic
motions, the models can be trained via supervision with specialized
network architectures [Kim et al. 2022; Starke et al. 2022; Zhang
et al. 2018] or in an unsupervised manner [Li et al. 2021a; Ling
et al. 2020; Rempe et al. 2021]. For physically simulated characters,
the embedding models are often trained implicitly while learning
imitation controllers via reinforcement learning. For instance, Peng
et al. [2019] propose multiplicative compositional policies (MCP),
which allow a policy to explore a compact embedding space to
activate multiple low-level skills. Won et al. [2021] use similar em-
bedding models to solve multi-agent problems. Recently, generative
embedding models that can control simulated characters without
conditioning on task-specific inputs have been studied based on
conditional VAEs [Won et al. 2022; Yao et al. 2022] and adversarial
learning [Peng et al. 2022]. Once the embedding models are trained,
a hierarchical controller can be trained to achieve various motions
by traversing the embedding. Similar to these works, we also lever-
age a pre-trained motion prior, but study motion retargeting using
the low-dimensional embedding space.

3 OVERVIEW
We present Adversarial Correspondence Embedding (ACE), a frame-
work for retargeting human motions to characters with significantly
different morphologies. Our problem takes a human motion dataset
Ωℎ and a character motion dataset Ω𝑟 as inputs and learns a gener-
ator 𝐺 that translates a human state xℎ (Section 6.1) into a target
character state x𝑟 (Section 6.2). We aim for the generated motions to
adapt to the target character’s motion patterns while preserving the
semantics of the original human motion. However, training such
a retargeting function is not straightforward due to the significant
morphological differences between the two datasets, as well as the
intrinsic ambiguity of the interspecific motion retargeting problem.

We approach this problem using the framework of adversarial
learning. We draw inspiration from its recent success in unpaired
image-to-image translation [Zhu et al. 2017] to build a correspon-
dence between human and character motions. Unlike supervised
learning [Kim et al. 2022], unsupervised learning allows us to learn
this correspondence with minimal or zero paired inputs. To further
improve the quality of motion, we pre-train a motion prior 𝜋 for a
character and construct a low-dimensional embedding space along
with a controller that can generate diverse motions within this space.
An overview of our approach is illustrated in Figure 2.

4 PRE-TRAINING OF CHARACTER MOTION PRIOR
Motion retargeting algorithms often directly map the input motion
of the source character to a high-dimensional motion of the tar-
get character. However, learning such a complex mapping can be
less practical due to unstable convergence during training. Instead,
we propose training a motion prior, denoted as 𝜋 (z𝑡 , x𝑟𝑡−1) ↦→ x𝑟𝑡 ,
which maps the embedded control variable z𝑡 and the previous
character’s state x𝑟

𝑡−1 to the character’s state at the current step
x𝑟𝑡 . Later, motion retargeting is learned in this embedding space,
making cross-morphology motion mapping more stable.
Recent literature [Abdul-Massih et al. 2017; Peng et al. 2022;

Zhang et al. 2018] in computer animation has discussed learning-
based techniques to obtain such generative motion controllers and
may complement the proposed framework. Notably, our framework
is agnostic to the choice of the method used to generate the motion
prior. In this paper, we use Variational Autoencoder (VAE)-based
method [Ling et al. 2020] to learn motion prior 𝜋 :

z𝑡 = 𝑐 (x𝑟𝑡−1, x
𝑟
𝑡 ) (1)

argmin
𝜋

E(x𝑟
𝑡−1,x

𝑟
𝑡 )∽Ω𝑟 | |x𝑟𝑡 − 𝜋 (z𝑡 , x𝑟𝑡−1) | | (2)

where x𝑟𝑡 is the character’s state at time instant 𝑡 , z𝑡 is the embedded
variable generated by encoding state transition (x𝑟

𝑡−1, x
𝑟
𝑡 ) using the

encoder network 𝑐 . Given the embedded state z𝑡 and the character’s
state, the motion prior 𝜋 aims to reconstruct x𝑟𝑡 . However, training
an effective motion controller that can capture all state transitions
while preserving naturalness is a challenging task. To address this,
we utilize the Mode-adaptive network (MANN) [Zhang et al. 2018]
as the neual network architecture of 𝜋 , which has been proven
effective in previous animation works. For detailed implementation
of MANN and the encoder, please refer to Sec 7.1. Through joint
training of the encoder 𝑐 and the motion prior 𝜋 , we can obtain an
embedded variable z and the motion prior for future usage.

5 ADVERSARIAL CORRESPONDENCE EMBEDDING
In this section, our goal is to develop an effective motion retargeting
function. Although the problem of motion retargeting inherently
involves ambiguity when dealing with inter-specific morphologies,
we aim to achieve two notable properties in the retargeted motion.
Firstly, the retargeted motion should look natural on the target char-
acter. Secondly, it should preserve the key features of the source
motion. To accomplish this dual objective, we approach the problem
of retargeting using generative adversarial learning [Aberman et al.
2020; Goodfellow et al. 2020; Villegas et al. 2018]. This involves
employing a trained discriminator 𝐷 to distinguish the motions
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retargeted by the generator 𝐺 from an existing character motion
dataset. This encourages the generator to produce motions that are
indistinguishable from pre-collected character motions, implying
that they are close to the character’s natural motion. Additionally,
we design a simple feature loss to match the high-level features of
the source and target motions. It is important to note that this fea-
ture loss plays a critical role in finding meaningful correspondence.
Without it, a generator may encounter the issue of “mode-collapse”,
where it learns to produce only a limited range of motions.

5.1 Problem Formulation
The typical formulation [Aberman et al. 2020] of motion retargeting
with Generative Adversarial Networks (GANs) learns a generator
𝐺 to directly map the motion of the source character xℎ into the
motion of the target character x𝑟 . However, such generator network
can be difficult to learn due to the high dimensional state spaces of
our characters. Instead, we leverage our pre-trained motion prior
to learn the correspondence in an embedding space. Our generator
(motion retargeting network) 𝐺 (xℎ𝑡 , x𝑟𝑡−1) ↦→ ẑ𝑡 takes the current
human pose xℎ𝑡 and the previous character motion x𝑟

𝑡−1 to generate
the embedded variable ẑ𝑡 . Then, the character state is produced by
the pretrained motion prior 𝜋 (ẑ𝑡 , x𝑟𝑡−1) ↦→ x̂𝑟𝑡 . Next a discriminator
𝐷 (x𝑟

𝑡−1, x̂
𝑟
𝑡 ) ↦→ [0, 1] maps the state transition to the generated

dataset (0) or character motion dataset (1).

5.2 Training of Discriminator
We train a discriminator𝐷 to distinguish the original state transition
(x𝑟

𝑡−1, x
𝑟
𝑡 ) in the character motion dataset Ω𝑟 from generated tran-

sition (x𝑟
𝑡−1, x̂

𝑟
𝑡 ) by the generator𝐺 , by minimizing a discriminator

loss 𝐿𝐷 :

𝐿𝐷 = −EΩ𝑟 [𝑙𝑜𝑔(𝐷 (x𝑟𝑡−1, x
𝑟
𝑡 ))] − EΩℎ [𝑙𝑜𝑔(1 − 𝐷 (x𝑟𝑡−1, x̂

𝑟
𝑡 ))], (3)

where x̂𝑟𝑡 = 𝜋 (𝐺 (xℎ𝑡 , x𝑟𝑡−1), x
𝑟
𝑡−1)) . (4)

However, GAN uses an iterative training formulation for updating
the discriminator and the generator, which often causes unstable
training dynamics. One reason is non-zero gradients on themanifold
of real data samples [Mescheder et al. 2018] due to the approximation
error in the discriminator. Thus, we incorporate a gradient penalty
regularizer, as used in prior works [Peng et al. 2022] to stabilize the
training and improve the quality of the training result. This gradient
penalty augments the previous discriminator objective as:

argmin
𝐷

𝐿𝐷 + 𝑤
𝑔𝑝

2
EΩ𝑟 [| |∇𝜆𝐷 (𝜆) |𝜆=z | |2], (5)

where we set the weight term𝑤𝑔𝑝 to be 0.1 for our experiments.

5.3 Training of Generator
Simultaneously, we train a generator 𝐺 to produce natural motion
transition while preserving semantic features of the source motion.
It is trained by minimizing the following objective function:

argmin
𝐺

𝑤𝑎𝑑𝑣𝐿𝑎𝑑𝑣 +𝑤 𝑓 𝑒𝑎𝑡𝐿𝑓 𝑒𝑎 . (6)

Here, 𝐿𝑎𝑑𝑣 is the adversarial loss derived from the discriminator
𝐷 and encourages 𝐺 to generate movements that deceive 𝐷 into
classifying them as character motion data. 𝐿𝑓 𝑒𝑎 is a feature loss that

indicates the preservation of the semantic features from the source
motion and is inspired by the concept of the group of body parts
(GBP) [Delhaisse et al. 2017]. Specifically, the adversarial loss 𝐿𝑎𝑑𝑣
is calculated by:

𝐿𝑎𝑑𝑣 (𝐺) = −𝑙𝑜𝑔(𝐷 (x𝑟𝑡−1, x̂
𝑟
𝑡 )) (7)

= −𝑙𝑜𝑔(𝐷 (x𝑟𝑡−1, 𝜋 (𝐺 (xℎ𝑡 , x𝑟𝑡−1), x
𝑟
𝑡−1))), (8)

and 𝐿𝑓 𝑒𝑎𝑡 is designed to match selected high level features:

𝐿𝑓 𝑒𝑎 (𝐺) = | |Ψ(xℎ𝑡 ) − Ψ(x̂𝑟𝑡 ) | | (9)

= | |Ψ(xℎ𝑡 ) − Ψ(𝜋 (𝐺 (xℎ𝑡 , x𝑟𝑡−1), x
𝑟
𝑡−1)) | |, (10)

where Ψ is a manually designed feature function, which includes
terms like end-effector positions (details in Section 6.3).

To account for potential differences in the number of end-effectors
between the human and target character, we have implemented a
mechanism for establishing automatic correspondence between
their respective end-effector indices. This is achieved by minimizing
the KL-divergence between the character’s end-effector position
distribution and the human end-effector position distribution:

𝑗 ↦→ 𝑖 : argmin
𝑖

𝐾𝐿[ 𝑝 (𝑥𝑟, 𝑗 ) | | 𝑝 (𝑥ℎ,𝑖 ) ] (11)

here, 𝑗 is the 𝑗-th end-effector of the target character, while 𝑖 is the
𝑖-th end-effector of the human. Besides this auto-mapping, the user
can also manually define a mapping, if required.

6 MODEL REPRESENTATION

6.1 Human Representation
We prepare a human motion dataset Ωℎ = {𝜉ℎ1 , 𝜉

ℎ
2 , · · · , 𝜉

ℎ
𝑁
} that

serves as an input distribution to adversarial learning. Here 𝜉ℎ =

{xℎ1 , x
ℎ
2 , · · · , x

ℎ
𝑇
} denotes one human motion trajectory containing

states xℎ . Each trajectory can have a different length of state se-
quence depending on the source motion. The state xℎ𝑡 at time 𝑡
includes features as follows:

• Height of the root from the ground [1 dim].
• Orientation of the root [4 dims].
• Linear and angular velocities of the root [6 dims].
• Position of each joint [51 dims].
• End-effector (foot, hand, head) position [15 dims].
• End-effector (foot, hand, head) velocity [15 dims].

Except for the height of the root, all the features are defined in
the local coordinate frame of the human character. Specifically, we
define the local coordinate frame as follows. First, we select the
pelvis of the character as the root node. Then the character’s local
coordinate frame is defined with its origin on the root node, its
x-axis aligned with the direction that the character is facing and its
z-axis is aligned with a global up-vector.

6.2 Target Character Representation
Similar as the human motion dataset, we prepare a character mo-
tion dataset Ω𝑟 = {𝜉𝑟1, 𝜉

𝑟
2, · · · , 𝜉

𝑟
𝑀
}. We define each motion 𝜉𝑟 =

{x𝑟1, x
𝑟
2, · · · , x

𝑟
𝑇
}, where x𝑟 represents a state vector.

The character’s state vector includes the following items:
• Height of the root from the ground [1 dim].
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Fig. 3. Illustration of the feature correspondence between the human and
the characers. The end-effector correspondence is built in automatically.
The feature loss is designed to track the root’s and end-effector’s motion.

• Orientation of the root [4 dim].
• Relative location of the root from the previous frame [2 dim].
• Orientation of the root in the previous frame [4 dim].
• Linear and angular velocities of the root [6 dim].
• Pose of each joint [joint number dim].
• End-effector positions [(3 * Number of EE) dim].
• End-effector velocities [(3 * Number of EE) dim].

Similar to Section 6.1, the features are defined in the local frame,
which is centered at the root node. The embedded control variable
z of the character is defined as a latent variable with 32 dims.

6.3 Design of Feature Loss
To preserve the semantic meaning of motions, we add an additional
feature loss to the training of the generator. The features selected Ψ
for this feature loss are as follows:

• Height of the root.
• Orientation of the root.
• Linear and angular velocities of the root.
• End-effector position.

All terms are normalized according to the character’s body length.
Figure 3 displays the visualization of the features. The generator
is trained to match these features between the source human and
target robot motion for all motions. End-effector correspondence is
automatically generated using the method introduced in Section 5.3.
However, manual mapping is also possible, and we present the
results in the result section. Overall, these features can be selected
without requiring extensive expert knowledge and have been widely
used in previous works such as [Aberman et al. 2020].

6.4 Network Architecture
This works contains 4 networks: the state transition encoder 𝐸 and
motion prior 𝜋 in the pretraining stage; the generator 𝐺 and the
discriminator𝐷 in the training stage. Here we list the their structure:

• Encoder Network 𝑐 : MLP network with LeakyRelu as activa-
tion function and a structure of [512, 512, 512, 512].

• Motion Prior 𝜋 : MANN [Zhang et al. 2018] structure with 8
experts and 512 as the unit number for each network layers.

• Generator Network 𝐺 : MLP network with LeakyRelu as acti-
vation function and a structure of [512, 512, 512].

• Discriminator Network 𝐷 : MLP network with SiLU as activa-
tion function and a structure of [512, 512, 512].

7 EXPERIMENT AND EVALUATION
In this section, we present qualitative evaluation of our approach
on retargeting human motion to different characters. We transfer
motion from a human to a Spot robot (a quadruped with a manipu-
lator), a Crab character (a hexapod with two arms), and a Stretch
robot (a wheeled robot with a manipulator). The wide range of mor-
phologies that we experiment with further reinforce the generality
of our approach, and that it can enable generic motion transfer be-
tween inter-specific morphologies. Quantitatively, we compare our
approach, ACE, against different baseline methods. In addition, we
conduct a user study to further evaluate our method against other
approaches. Finally, we transfer the retargeted motion to the real
Spot robot.

7.1 Implementation Details and Datasets
Our motion retargeting framework is implemented in PyTorch, and
the experiments are performed on a PC equipped with an NVIDIA
GeForce RTX 2070 Super andAMDRyzen 9 3900X 12-Core Processor.
We optimize the parameters of the motion prior, discriminator and
generator with the loss functions mentioned in Section 5.3 using the
Adam optimizer [Kingma and Ba 2014]. Training in total takes about
1 hour without any parallelization, including training the motion
prior, generator and discriminator.

To evaluate our method, we constructed a human motion dataset
with 200 trajectories that contains 75594 input motion states. The hu-
man dataset is from 2 sources: CMUMotion Capture Database [CMU
2002], and Ubisoft La Forge Animation Dataset ("LAFAN1") [Har-
vey et al. 2020]. The motions in the CMU dataset are around 300
frames (4.8s) while the LAFAN1 Dataset contains large motion tra-
jectories (around 5000 frames, 90s). The selected motions include
a variety of human motions including sports, dancing, housework
and construction work.
The evaluation of retargeting human motions are conducted on

three characters with various morphologies:

• Spot: Spot is a quadrupedal robot [BostonDynamics 2019]
with a manipulator on its back, developed by Boston Dynam-
ics. The robot has 32 cm long thigh and shank links. It has 12
degrees of freedom (DoFs) for locomotion and 6 DoFs for its
manipulator, which results in a total of 18 DoFs.

• Crab: Crab is a hexapod character with two arms. With each
leg and arm has 3 joints which leads to a 24 DoFs.

• Stretch: Stretch is a wheel-based mobile manipulation robot
character from Hello Robot [HelloRobot 2023]. The Stretch
has a single arm with four prismatic joints.

One crucial component of ACE is the learned motion prior that
should be expressive and be able execute a large range of skills.
This requires a diverse motion dataset on the target characters.
Our character dataset contains different locomotion gaits with base
linear and angular velocities ranging from -1.5 to 5m/s and -1 to 1
rad/s. The character motion are generated by rolling out kinematic
controller with random target commands. The kinematics controller
plans footstep location based on the current and target velocity
of the root and uses a parabolic trajectories generator for swing
leg motion. We tuned the parameters of the controller to make
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the generated motions similar to the dog mocap data. For wheel-
based robots, we make simplification by assuming it can walk with
arbitrary speeds and directions using low-level controllers. We use
a total 200k data points for each character.

7.2 Main Results
We illustrate various retargeted motions of all the characters in Fig-
ure 4. Our method successfully retargeted a wide range of dynamic
human motions, such as sports and construction activities. In all
scenarios, the generated motions look feasible and preserve the orig-
inal semantics of the human motions without showing significant
visual artifacts, such as self-penetration or foot skating. Note that
our method is general enough to support very different characters
with various numbers of legs and arms.

Our system considers the different capabilities of the human and
the character by matching the normalized feature vectors. Therefore,
the retargeted motions often travel or sweep less than the original
human motions. For example, Spot pushes the object for 1.39 m,
which is less than 3.48 m of the human (Figure 4a, the third row).
This design choice is reasonable considering the height difference
between the human (≈ 1.7 m) and the Spot robot (≈ 0.51 m). This
scaling factor can also be easily changed based on user preference.
In our design, the characters take their footsteps in their own

styles, instead of taking synchronized steps. This allows the char-
acters to exhibit more feasible and natural motions based on their
capability: for instance, the drag motion of Spot naturally changes
the gait from trotting to galloping based on the human’s walking
speed (1:56 in the supplemental video). However, we also want to
note that this design decision may sacrifice the additional semantics
of feet movements.

7.3 Baseline Comparison
To prove the effectiveness of the proposed method and its individual
component, we compare our method to the following methods:

• Neural Kinematic Network (NKN): the first baseline we
compare is Neural Kinematic Network (NKN) of Villegas
et al. [2018]. NKN uses a recurrent neural network structure
with a Forward Kinematics layer and adversarial learning
with cycle consistency. However, NKN only addresses the
morphology with same skeleton structure which can not
be adapt to our setting as-is. Since the number of joints is
different between the domains, we use the same treatment
as proposed by Aberman et al. [2020] which removes NKN’s
reconstruction loss.

• ACE without Feature Loss (ACEwoFea): the second base-
line is ACE but without the feature loss. This baseline aim to
evaluate how feature loss affects the result of the training.

• ACE without Adversarial Loss (ACEwoAdv): the third
baseline is ACE without the adversarial loss, which corre-
sponds to inverse kinematics only based on manual features.
Here, we aim to evaluate the importance of the adversarial
loss in training motion retargeting function.

For quantitatively measuring the performance of the approaches,
we borrow two evaluation metrics, Diversity and Frechet Inception
Distance, from the existing text-to-motion literature [Guo et al. 2022,

2020; Tevet et al. 2022]. We further adopt two additional metrics, a
feature loss and the unrealistic frame ratio.

• Diversity (DIV): Diversity measures the variance of gener-
ated motion across all source humanmotions. From a set of all
generated motions from different source human motions, two
subsets of the same size 𝑆𝑑 are randomly picked. Their motion
features {Ψ(x𝑟1) · · ·Ψ

(x𝑟
𝑆𝑑
)} and {Ψ(x′𝑟1) · · ·Ψ(x′

𝑟
𝑆𝑑
)} are ex-

tracted as defined in Sec. 6.3. The diversity of this set of
motion is defined as: 𝐷𝐼𝑉 = 1

𝑆𝑑
Σ𝑆𝑑
𝑖=1 | |Ψ(x

𝑟
𝑖
) − Ψ𝑟 (x′𝑟𝑖 ) | |. In

motion retargeting, it is better to obtain a DIV score similar to
that of the dataset. In addition, lower diversity often indicates
the degeneration of the synthesized motions.

• Frechet Inception Distance (FID): FID measures the dis-
tance between feature vectors computed for two motion
datasets, which is a common metric to evaluate the synthe-
sized motion quality. We compute the feature distributions
for the character’s motions and the retargeted motions, and
measure the distribution difference. Lower FID indicates that
two motion sets have similar feature distributions.

• Feature Loss (𝐿𝑓 𝑒𝑎):We also measure the feature loss (Equa-
tion 9). Feature loss indicates the preservation of ‘semantic
meaning’. Lower scores indicates better results.

• Unrealistic Frame Ratio (UFR): UFR reflects the realism of
the motion. It is defined as the number of generated motion
frames containing unrealistic effects divided by the total num-
ber of motion frames. The unrealistic effects that we consider
include self-collision, foot penetration, and foot sliding.

We evaluate our motion retargeting framework on 16 motions
including sports activities, construction tasks, and house chores.
The quantitative results are summarized in Table 1. The qualita-
tive results are presented in Figure 4 and can be best seen in the
supplementary video.

Table 1. Quantitative results on the Spot.

DIV→ FID ↓ 𝐿𝑓 𝑒𝑎 ↓ UFR ↓
Dataset 2.254 0.000 N/A 0.258%
ACE(Ours) 2.483 0.489 0.606 2.071%
NKN 1.718 0.914 0.912 6.213%
ACEwoFea 0.445 0.976 1.975 0.517%
ACEwoAdv 3.077 0.736 0.553 9.741%

Overall, ACE generates natural and compelling retargeted mo-
tions on the every chracters, including both realistic leg and arm
movements (Figure 4). The generated motions maintain the seman-
tic knowledge in the original motion, and show minimal transfer
artifacts, such as foot skating or self-collision, thanks to the pre-
trained motion priors and adversarial loss. The robot also shows rich
whole-body movements as shown in Volleyball, Tennis and Pushing
(Figure 4a). As a result, ACE outperforms all the methods in DIV
(closest to DIV of the dataset) and FID, while being the second best
in 𝐿𝑓 𝑒𝑎 and UFR.
Although ACEwoFea produces natural motions, the generated

motions fall into the repetitive patterns and lose the semantic in-
formation of the human motion, as demonstrated by the Diversity
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value of 0.445 and 𝐿𝑓 𝑒𝑎 value of 1.975 while ACE gets a higher di-
versity and a lower feature loss. This mode collapse phenomenon is
very common in adversarial learning settings. The features are used
as a regularization term in training to help mitigate mode collapse.
ACEwoAdv is capable of generating reasonable outputs when

retargeting certain human motions by preserving the semantic fea-
tures: it shows the lowest 𝐿𝑓 𝑒𝑎 of 0.553. However, there are many
scenarios where it fails to produce satisfactory results, despite the
use of a pretrained motion prior. This can be demonstrated by its
high FID value of 0.736 while ACE has 0.489. In addition, it often
produces unrealistic motions with self-collision, foot penetration,
and foot sliding, which is supported by the worst unrealistic frame
ratio (UFR) value of 9.741%.

Our comparison reveals that when generating high-quality retar-
geted motions, ACE outperforms NKN in many criteria. Previous
work on motion retargeting [Aberman et al. 2020] has noted the
crucial role played by the reconstruction loss in NKN. Removing
this component for supporting cross-morphology scenarios could
result in degradation of the motion quality produced by NKN.

7.4 User Study
In addition to the aforementioned quantitative evaluation, we con-
ducted a user study to assess how our method performs in terms of
visual perceptual quality when compared to other baseline meth-
ods. Our study group comprised 20 participants with varying levels
of expertise and experience in character animation. Prior to the
study, participants were provided a comprehensive explanation of
the study, without any information about the underlying method.

In the user study, five different source human motions were ran-
domly selected from the dataset and presented to the subjects, along
with the retargeted character motions generated by each method.
The selected human motions comprised various sports and other
human activities. The subjects are asked to evaluate the generated
motion in 0 to 5 scales based on realism and the magnitude align-
ment to the source human motion. During the study, the user has
no access to the method that generates the motion.

The preference results are presented in Table 2. According to the
results, most users picked the retargeted motions of ACE as the
most favorable. On the other hand, ACEwoFea received the worst
result as it loses all semantic information of the human motions.
Our findings also show that ACEwoAdv achieved a relatively high
score, although ACE is still statistically better than ACEwoAdv
with a p-value of 0.03. This is because ACEwoAdv can provide
better results compared to NKN and ACEwoFea. However, it is
important to note that unrealistic effects such as foot sliding or
foot penetration may not be easily captured by non-expert users.
The user study offers strong evidence of the effectiveness of our
approach in retargeting motions across different morphologies.

Table 2. User study on scoring the retargeted motions.

ACE(Ours) NKN ACEwoFea ACEwoAdv
4.25 ± 0.39 1.41 ± 0.78 (***) 1.01 ± 0.80 (***) 3.95 ± 0.45 (*)

7.5 Flexibility for Incorporating User’s Preference
Although ACE includes an automatic end-effector mapping mech-
anism, the end-effector correspondence can also be manually set
according to the user’s preference. In the previous section, the au-
tomatic mapping assigned the manipulator of the Spot robot to
the right hand of the human character. However, we can manually
assign the manipulator to the left hand of the human and use ACE
to produce new retargeted motions. Figure 5 presents the result un-
der the new mapping. In addition to manual end-effector mapping,
other heuristics, such as specific joint-level mapping or foot-pattern
synchronization, can be incorporated into ACE by modifying the
feature loss function.

7.6 Real Robot Experiments
One application of our work is to reproduce the retargeted mo-
tions on a real robot via sim-to-real transfer. This is important in
robotics because it allows the robot to acquire various motor skills
from human movements. Once motion is retargeted, we can use
several techniques for executing the given motion, such as motion
imitation [Peng et al. 2018] or model-based control [Li et al. 2021b].
We selected the Spot robot as the robotic platform. The vendor-

provided Spot API takes as input the base velocity command and
the manipulator joint angle. Just for this experiment, we manually
define the latent space z as the root and arm commands to directly
leverage the vendor-provided controller as the low-level motion
prior.
We transferred two motions, Sword and Fencing, which involve

rich full-body motions and rapid arm motions. The Spot robot was
able to execute both sequences at 100 % success rates out of five trials.
Our ACE framework generates physically plausible motions that
are within the region of attraction of the given controller. However,
the details of the footsteps were different, particularly when the
arm is stretched and starts to affect the balance. In this case, the
real Spot robot takes wider steps to recover the balance (Figure 7).
The numbers of footsteps are also different: 14 for our kinematically
retargeted motions and 26 for the real Spot due to the differences in
the controllers as well as the need for balance recovery. However, it
is important to note that these experiments are designed to highlight
the robotic application but do not indicate any guarantee on sim-to-
real transfer.

8 DISCUSSION AND FUTURE WORK
This work presents a learning-based framework, Adversarial Cor-
respondence Embedding (ACE), which retargets a given human
motion to another character with significant morphological differ-
ences. Our framework leverages adversarial learning to generate
natural character motions while guiding the correspondence learn-
ing via a feature loss. We also introduce a pre-trained motion prior
and learn retargeting in a compact embedding space, which leads
to smooth, physically realistic motion on the character. We demon-
strate that the proposed framework can generate compelling retar-
geted motions on three characters, Spot, Crab, and Stretch, with
various morphologies. We also conduct baseline comparisons and a
user study to justify the design decisions of our framework. Finally,
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we highlight the potential robotic application by transferring the
retargeted motions to a real Spot robot.
In our experiment, we observed some poorly retargeted results.

They are mainly caused by two reasons. The first reason is that our
database does not have enough motions to support certain types
of human motions. For instance, a fast backward human motion
is transferred to a much slower motion of a character due to the
lack of corresponding motion. The second reason is the quality of
the learned motion priors. Although we use the Mode-Adaptive
Network (MANN) to replicate motions in the dataset, it occasionally
produces jerky or unexpected motions. To improve the quality of
the resulting motions, we can either add more data to the dataset
or use more advanced motion synthesis techniques, such as Deep
Phase [Starke et al. 2022].
There are several interesting directions that we aim to explore

as our future work. Our current implementation does not system-
atically consider the differences in dynamic capabilities between
morphologies. For example, a larger human may be able to turn
faster than a smaller character. Exploring solutions for such scenar-
ios may require investigating long-horizon motion planning with
reinforcement learning or time-warping. In addition, our trained
model is limited to a single robot. We plan to investigate a general
motion embedding space that can freely translate motions back
and forth betweenvarious morphologies, including human to char-
acter, character to human, and character to character. Finally, our
framework may be less effective in handling characters without
clear notions of arms and legs, such as a shark [Seol et al. 2013] or a
caterpillar [Rhodin et al. 2014]. Extending the proposed framework
for more general characters will be an interesting future research
direction.
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(a) Spot Volleyball, Tennis, and Pushing.

(b) Crab Waving and Chopping.

(c) StretchWall Washing and Swimming.

Fig. 4. Retargeted Motions on Spot, Crab and Stretch. Our framework can retarget various human motions while preserving semantic features.

Fig. 5. Different generated Spot Wave motions by varying end-effector mapping. The blue uses auto-mapping while the pink one is manually assigning Spot’s
manipulator with human left arm.

10



ACE: Adversarial Correspondence Embedding for Cross Morphology Motion Retargeting SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Fig. 6. Comparing our method with the baseline methods, we demonstrate that our approach can generate realistic character motion while preserving the
semantic information of the input motion.

Fig. 7. We successfully transferred two whole-body motions generated for Spot, Fencing and Sword, to the Spot robot without any failures.
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